

MAUI ISLAND WATER USE AND DEVELOPMENT PLAN DRAFT

PART III REGIONAL PLANS

# CENTRAL AQUIFER SECTOR AREA

RECEIVED AT APT MEETING ON 8 3 21

The figure below shows the MDWS systems and HC&S lands overlying the three aquifer sectors.





| WWRF      | Treatment | WWRF     | Recycled | Recycled | % of Total | % of Design | Application     |  |
|-----------|-----------|----------|----------|----------|------------|-------------|-----------------|--|
|           | Level     | Design   | Water    | Water    | Produced   | Capacity    |                 |  |
|           |           | Capacity | Produced | Used     | Used       | Used        |                 |  |
| Wailuku   | R-2       | 7.9      | 4.7      | 0.25     | 5.3%       | 3.2%        | None            |  |
| -Kahului  |           |          |          |          |            |             |                 |  |
| Kīhei     | R-1       | 8        | 3.6      | 1.5      | 41.5%      | 18.7%       | Golf Course,    |  |
|           |           |          |          |          |            |             | Agriculture,    |  |
|           |           |          |          |          |            |             | Dust Control,   |  |
|           |           |          |          |          |            |             | Landscape, Fire |  |
|           |           |          |          |          |            |             | Protection      |  |
| Mākena    | R-1       | 0.75     | 0.08     | 0.08     | 10.6%      | 10.6%       | Golf Course     |  |
| (Private) |           |          |          |          |            |             |                 |  |
| Pukalani  | D 1       | 0.20     | 0.10     | 0.10     | 100%       | 65.5%       | Landssano       |  |
| (Private) | N-T       | 0.29     | 0.19     | 0.19     | 100%       | 03.370      | Lanuscape       |  |

#### Table 15-14 Wastewater Reclamation Facility Capacity, Production and Use, 2014 (mgd)

Source: Department of Environmental Management, Wastewater Reclamation Division, Central Maui Recycled Water Verification Study, December 2010

## Mākena Resort Wastewater Reclamation System

The Mākena area is predominantly served by cesspools. There is no publicly owned treatment works operating in the area. Mākena Resort is served by a privately owned individual wastewater system with effluent treated to R-1 quality. The Mākena Wastewater Reclamation Facility encompasses an area of approximately 13 acres, mauka of the Mākena North Golf Course. The reclaimed water is pumped up to a larger reservoir within the golf course irrigation system, mixed with non-potable ground water from nearby wells, and used to irrigate portions of the North and South courses. Its average daily capacity is approximately 0.72 mgd and is designed to be expanded to 1.5 mgd in the future. The current average daily flow is approximately 80,000 gallons. The primary reuse is golf course irrigation. Additional reuse is for wastewater facility uses such as landscape irrigation, washdown and dilution water.

## Pukalani Wastewater Reclamation System

Hawai`i Water Service Company treats 200,000 gpd of wastewater using membrane bio-reactor technology used to irrigate the adjacent Pukalani golf course. About 190,000 gpd are used and no recycled water expansion plans are identified.

#### Stormwater Reuse

Capture and reuse of stormwater runoff is an under-utilized water resource that provides an opportunity to reduce reliance on groundwater and surface water for landscape irrigation, especially when incorporated into the design of development projects in order to minimize infrastructure costs. There is no reported stormwater reuse in the Central ASEA, although some development projects may have stormwater controls incorporated into project design to reduce runoff and its effects. The *Hawai'i Stormwater Reclamation Appraisal Report, 2005, and* 

### State Department of Hawaiian Home Lands (DHHL) Water Demand Projections

The DHHL maintains land use jurisdiction over Hawaiian Homes and is not subject to county zoning designations. Water rates used by the State Water Projects Plan Update, DHHL, May 2017, and projected demand based on the DHHL Maui Island and regional land use plans are described in the table below.

| Land Use                    | Acres or Residential Units Central<br>ASEA                                                                                                     | Potable Water<br>Standard              | Non-potable<br>(gal/acre) |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|
| Residential                 | 1,286 acres: Kēōkea (386 units [66<br>Subsistence Agriculture 3-ac lots, 320<br>Residential 1-acre lots]), Waiohuli (768<br>units = 768 acres) | 600 gal/unit                           | None                      |
| Subsistence Ag              | 100 acres: Kēōkea-Waiohuli<br>(ranching/grazing)*                                                                                              | 600 gal/unit                           | 3400 gal/acre             |
| Supplemental<br>Agriculture | 0                                                                                                                                              | None                                   | 3400 gal/acre             |
| Pastoral                    | 0                                                                                                                                              | 600 gal/unit                           | 20 gal/acre               |
| General Ag                  | 546 acres: Pu`unēnē                                                                                                                            | None                                   | 3400 gal/acre             |
| Special District            |                                                                                                                                                | Varies                                 | Varies                    |
| Community Use acres         | 109 acres: Kēōkea (69 ac) + Waiohuli<br>(40 ac)                                                                                                | 1,700 gal/acre<br>or 60<br>gal/student | None                      |
| Conservation                | 0                                                                                                                                              | None                                   | None                      |
| Commercial                  | 0                                                                                                                                              | 3,000 gal/acre                         | None                      |
| Industrial                  | 100 acres: Pu`unēnē                                                                                                                            | 6,000 gal/acre                         | None                      |

| Table 15-16 DHHI Land Lise    | Central ASEA Acreage an       | d Water Standards for Maui   |
|-------------------------------|-------------------------------|------------------------------|
| Table 13-10 Diffield Land 036 | , CEIILI AI AJLA ALI CASE, AI | iu watel Stanuarus ior wiaur |

Table prepared by MDWS, Water Resources & Planning Division. Figures are estimates based on DHHL Maui Island Plan and Regional Plans.

\*State of Hawai`i, Department of Hawaiian Homelands, Kēōkea-Waiohuli DHHL Regional Plan, 2011, page 18

The 2017 State Water Projects Plan (SWPP) has been updated to address DHHL's project needs from 2016 to 2031.<sup>55</sup> There are three major DHHL project areas in the Central ASEA (Pu`unēnē, Kēōkea, and Waiohuli). Planned projects by aquifer system area are summarized below. Projected water demand and strategies for build-out of the Central ASEA DHHL projects over the WUDP planning period are discussed below. Build out of the two projects are not included in directed growth areas, or appear accounted for in the MIP. Therefore, projected demand

<sup>&</sup>lt;sup>55</sup> State of Hawai`i Department of Hawaiian Homelands, State Water Projects Plan Update, 2017



Figure 15-25 Important Agricultural Lands, EMI Ditches and Service Areas, and Rainfall for HC&S Lands

Table 15-31 Projected Low to High Agricultural Demand for A&B/HC&S Lands within EMIService Area 2017 - 2035

|                            | Low-Growth<br>Scenario 25% of IAL<br>Farmed | Mid-Growth<br>Scenario 50% of IAL<br>Farmed | High-Growth Scenario: 100% of<br>Plantation Served by EMI and/or<br>Brackish Water per HC&S<br>Diversified Agriculture Plan |
|----------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Time Frame                 | 2020                                        | 2030                                        | 2035                                                                                                                        |
| Irrigated Acres            | 6,823                                       | 13,647                                      | 26,996                                                                                                                      |
| Irrigation Demand<br>(mgd) | 23.20                                       | 46.40                                       | 89.23                                                                                                                       |

The extent to which brackish water from Pā`ia and Kahului Aquifers can and will be used is highly uncertain and probably directly related to the amount of irrigation return recharge over the same aquifers. It is anticipated that decreased irrigation return recharge will increase salinity and the

The following tables are revised to reflect Mahi Pono's projected irrigation demand.

| Page 80, Table 15-31 Projected Low to High Agricultural Demand for Mahi Pono Farm Plar | I |
|----------------------------------------------------------------------------------------|---|
| 2019 - 2035                                                                            |   |

|                         | Low-Growth Scenario<br>2019 Crop Plans | Mid-Growth Scenario<br>50% of Farm Plan | High-Growth Scenario:<br>100% of Farm Plan |
|-------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------|
| Time Frame              | 2020                                   | 2030                                    | 2035                                       |
| Irrigated Acres         | 3,868                                  | 10,325                                  | 20,650                                     |
| Irrigation Demand (mgd) | 15.58                                  | 41.16                                   | 82.33                                      |

#### Page 83, 15.6.7 Population Growth-Based Water Demand Projections Analysis

The selected 20-year projected demand scenario for the Central ASEA is population mid-growth based, that account for the MDWS Upcountry system as a whole, with the addition of DHHL needs and the Upcountry Meter Priority List. Substituting the HC&S Diversified Agriculture Plan with Mahi Pono Farm Plan, total 2035 demand is projected to **122.32 mgd**, a decrease from 128.105 mgd.



Page 86, Figure 15-26 Projected Water Use to 2035, Population Growth Based (Low, Medium, High) Central ASEA + MDWS Upcountry System + Upcountry Meter Priority List + DHHL (mgd)

sustainable level of groundwater use, compared to historic levels. The tolerance of various crops to brackish water quality further adds to uncertainty in use.

## **Diversified Agriculture Outside the HC&S Plantation**

Upcountry Maui has a range of actively cultivated crops while the dry slopes between Kula and the coastal area of Kama`ole Aquifer is primarily unirrigated pasture. Based on the 2015 Agricultural Baseline and applying irrigation water duty in accordance with Hawai`i Department of Agriculture guidelines, water demand outside the HC&S plantation of the Central ASEA would be 9.9 mgd. Use includes the Kula Ag Park, the Maui Pineapple Company and Monsanto seed production on the Central isthmus. Projecting a potential 20 percent increase in agricultural use, and accounting for the planned expansion of the Kula Ag Park represents a high growth scenario. Adjustments to projected demand are anticipated once the the Agricultural Water Use & Development Plan is updated. Until then, the high growth scenario 11.8 mgd is conservatively selected as the 2035 demand projection. Table 15-32 below shows breakdown by crop, acreage and water duty over the planning period.

| Сгор                             | Acreage Water Use<br>Rate (gpd<br>per acre) |                      | Estimated<br>Water<br>Demand 2015<br>(mgd) | Estimated<br>Demand 2035<br>(2015 + 20%) |
|----------------------------------|---------------------------------------------|----------------------|--------------------------------------------|------------------------------------------|
| Banana                           | 16.70                                       | 3,400                | 0.057                                      | 0.068                                    |
| Coffee                           | 10.58                                       | 2,900.00             | 0.031                                      | 0.037                                    |
| Diversified Crop                 | 1,197.22                                    | 3,400.00             | 4.071                                      | 4.885                                    |
| Flowers / Foliage /<br>Landscape | 97.97                                       | 4,000-6,000          | 0.490                                      | 0.588                                    |
| Pasture                          | 53,720.04                                   | 0-6,700              | 0.000                                      | 0.000                                    |
| Pineapple                        | 1,093.52                                    | 1,350.00             | 1.476                                      | 1.772                                    |
| Seed Production                  | 754.41                                      | 3,400.00             | 2.565                                      | 3.078                                    |
| Taro                             | 0.23                                        | 100,000-<br>300,000* | 0.035*                                     | 0.041*                                   |
| Tropical Fruits                  | 21.69                                       | 4,400-<br>10,000     | 0.156                                      | 0.187                                    |
| Kula Ag Park Expansion           | 302.00                                      |                      | 1.027                                      | 1.232                                    |
| CENTRAL Total                    | 57,214.35                                   |                      | 9.908                                      | 11.888                                   |

| Table 15-32 Central ASEA Agricultural Water Demand (mgd), 201  | 5 Agricultural Baseline |
|----------------------------------------------------------------|-------------------------|
| (acreage), Agricultural Water Use Based on Crop, Water Use Rat | es - HDOA Guidelines    |

Coffee: per Brian Kau, HDOA, personal communication 10/12/2016.

Wetland taro: Per CWRM CC D&O, Nā Wai `Ehā and East Maui Streams

|                                                                                           | 2014    | 2015    | 2016    | 2017    | 2018    | 2019    | 2020    | 2025    | 2030    | 2035    |
|-------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| POPULATION BASED                                                                          |         |         |         |         |         |         |         |         |         |         |
| Domestic                                                                                  | 0.000   | 0       | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| Industrial                                                                                | 0.208   | 0.211   | 0.217   | 0.222   | 0.227   | 0.232   | 0.237   | 0.261   | 0.290   | 0.316   |
| Agriculture                                                                               | 191.452 | 191.452 | 191.452 | 32.434  | 32.534  | 26.829  | 28.495  | 54.075  | 95.245  | 95.245  |
| Irrigation                                                                                | 3.683   | 3.744   | 3.836   | 3.927   | 4.018   | 4.110   | 4.201   | 4.627   | 5.133   | 5.591   |
| R-1 Irrigation                                                                            | 1.008   | 1.025   | 1.050   | 1.075   | 1.100   | 1.125   | 1.150   | 1.267   | 1.405   | 1.531   |
| Municipal MDWS                                                                            | 22.235  | 22.609  | 23.160  | 23.712  | 24.263  | 24.814  | 25.366  | 27.939  | 30.995  | 33.761  |
| Municipal Private                                                                         | 0.235   | 0.239   | 0.245   | 0.250   | 0.256   | 0.262   | 0.268   | 0.295   | 0.327   | 0.356   |
| Municipal CENTRAL ASEA Only                                                               | 22.470  | 22.899  | 23.423  | 23.960  | 24.509  | 25.070  | 27.928  | 30.871  | 34.303  | 37.501  |
| MDWS Upcountry System Only                                                                | 7.610   | 7.693   | 7.785   | 7.879   | 7.973   | 8.069   | 8.155   | 8.292   | 8.432   | 8.530   |
| Military                                                                                  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| TOTAL CENTRAL ASEA Pop. Based Mid Growth excl.                                            |         |         |         |         |         |         |         |         |         |         |
| AG                                                                                        | 27.368  | 27.880  | 28.526  | 29.184  | 29.854  | 30.537  | 33.517  | 37.026  | 41.132  | 44.939  |
| Total Central ASEA Pop. Based Mid Growth Incl. AG                                         | 218.820 | 219.332 | 219.978 | 61.618  | 62.388  | 57.366  | 62.012  | 91.101  | 136.377 | 140.184 |
| Total Central ASEA Low Growth                                                             | 218.820 | 216.948 | 217.539 | 59.122  | 59.835  | 54.755  | 59.146  | 87.936  | 132.860 | 136.341 |
| Total Central ASEA High Growth                                                            | 218.820 | 221.529 | 222.226 | 63.917  | 64.740  | 59.772  | 64.653  | 94.019  | 139.618 | 143.725 |
| DHHL Additional to Pop. Growth Puunene Potable<br>Kahului Aquifer                         |         |         | 1.734   | 1.734   | 1.734   | 1.734   | 1.734   | 1.734   | 1.734   | 1.734   |
| DHHL Additional to Pop. Growth Keokea/Waiohuli,<br>Ulupalakua Potable Kamaole Aquifer     |         |         | 0.096   | 0.096   | 0.096   | 0.096   | 0.3489  | 0.3489  | 0.8097  | 0.8131  |
| DHHL Additional to Pop. Growth Keokea/Waiohuli,<br>Ulupalakua Non Potable Kamaole Aquifer |         |         |         |         |         |         | 0.578   | 0.578   | 0.578   | 0.578   |
| DHHL Additional to Pop. Growth Puunene Non<br>Potable                                     |         |         | 1.8564  | 1.8564  | 1.8564  | 1.8564  | 1.8564  | 1.8564  | 1.8564  | 1.8564  |
| SELECTED SCENARIO: Pop. Based Mid Growth MDWS                                             |         |         |         |         |         |         |         |         |         |         |
| Upcountry System, 100% Meter Priority List, DHHL                                          | 210.487 | 210.640 | 214.521 | 55.698  | 55.995  | 50.488  | 53.174  | 79.368  | 121.706 | 122.320 |
| LAND USE BASED                                                                            |         |         |         |         |         |         |         |         |         |         |
| County Zoning                                                                             | 433.259 | 433.259 | 433.259 | 433.259 | 433.259 | 433.259 | 433.259 | 433.259 | 433.259 | 433.259 |
| DHHL                                                                                      | 4.011   | 4.011   | 4.011   | 4.011   | 4.011   | 4.011   | 4.011   | 4.011   | 4.011   | 4.011   |
| TOTAL Land Use Based                                                                      | 437.27  | 437.27  | 437.27  | 437.27  | 437.27  | 437.27  | 437.27  | 437.27  | 437.27  | 437.27  |

# Page 84, Table 15-33 Projected Water Use by CWRM Category to 2035 (mgd) Central ASEA

# ADDENDUM

# Page 133, Table 15-39 Summary of Recommended Strategies Central ASEA

| STRATEGY |                                                                                                                                                                                                                                                                                                                                                          | PLANNING OBJECTIVES                                                                                                                 | ESTIMATED<br>COST            | IMPLEMEN<br>1: Short-term 1<br>2: Long-term 5<br>AGENCY | TATION<br>- 5 years<br>20 years<br>TIME-<br>FRAME |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------|---------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                          | RESOURCE MANAGEME                                                                                                                   | NT                           |                                                         |                                                   |
| 1        | Explore funding and conduct a<br>cost benefit analysis of<br>improvements to the EMI non-<br>potable conveyance system to<br>mitigate losses and preserve<br>existing reservoirs at risk of<br>decommissioning. Priority<br>components and associated costs<br>TBD.                                                                                      | Maintain sustainable<br>resources<br>Protect water resources<br>Protect and restore streams<br>Maximize efficiency of water<br>use  | N/A                          | Maui County<br>A&B<br>Properties/<br>EMI                | 1,2                                               |
|          |                                                                                                                                                                                                                                                                                                                                                          | CONVENTIONAL WATER SOURCE                                                                                                           | STRATEGIES                   |                                                         |                                                   |
| 2        | Assess alternative options to<br>restructure and process the existing<br>Upcountry Meter Priority List to<br>improve processing rate and<br>adequate source development.                                                                                                                                                                                 | Provide adequate volume of<br>water supply<br>Maximize reliability of water<br>service                                              | N/A                          | MDWS                                                    | 1,2                                               |
| 3        | Explore new basal well development<br>in the Makawao Aquifer to<br>accommodate growth Upcountry<br>and add reliable new source.<br>Potential yield is up to 3 mgd.                                                                                                                                                                                       | Provide adequate volume of<br>water supply<br>Maximize reliability of water<br>service<br>Minimize adverse<br>environmental impacts | \$4.5 – 6.0<br>/1000 gallons | MDWS<br>DLNR<br>Public/<br>private<br>partnerships      | 1,2                                               |
| 4        | Explore East Maui well development<br>in combination with Makawao<br>Aquifer basal groundwater to meet<br>projected demand on the MDWS<br>Upcountry System. Initiate a<br>hydrologic study to determine any<br>negative impact on existing ground<br>and surface water sources, stream<br>flow and influences from dikes.<br>Potential yield is > 6 mgd. | Provide adequate volume of<br>water supply<br>Maximize reliability of water<br>service<br>Minimize adverse<br>environmental impacts | \$3.71*<br>/1000 gallons     | CWRM<br>USGS<br>MDWS                                    | 1,2                                               |
| 5        | Explore Pā`ia Aquifer for non-<br>potable demand, and potable use<br>with additional treatment as<br>necessary to serve projects included<br>in the Maui Island Plan that cannot<br>feasibly be serviced by MDWS<br>source and infrastructure. Estimated<br>demand for the Maui High School<br>Campus is about 0.75 mgd.                                 | Provide adequate volume of<br>water supply<br>Maximize reliability of water<br>service                                              | N/A                          | Maui County                                             | 1,2                                               |

# ADDENDUM

|    | STRATEGY                                                                                                                                                                                                                                                                                                                                                                                                                      | PLANNING OBJECTIVES                                                                                                                                                                                                 | ESTIMATED<br>COST                                                                                                                                       | AGENCY                                   | TIME<br>FRAME |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|
| 6  | Execute a long-term source<br>agreement for use and maintenance<br>of the Wailoa Ditch that ensures<br>adequate non-potable supply for the<br>Kula Agricultural Park expansion and<br>potable supply for projected MDWS<br>Upcountry System needs over the<br>planning period.                                                                                                                                                | Provide adequate volume of<br>water supply<br>Maximize reliability of water<br>service                                                                                                                              | N/A                                                                                                                                                     | Maui County<br>MDWS<br>A&B<br>Properties |               |
| 7  | Pursue hydrologic studies needed to<br>explore the Ha`ikū Aquifer <b>and</b> an<br>updated ditch flow analysis to<br>optimize raw water storage and<br>treatment plant capacity at Kamole<br>Weir in order to expedite the most<br>feasible new source. Surface water<br>strategies are contingent on a long-<br>term agreement with A&B<br>Properties allocating adequate<br>surface water for the MDWS<br>Upcountry System. | Minimize cost of water<br>supply<br>Provide adequate volume of<br>water supply<br>Maximize reliability of water<br>service<br>Maintain consistency with<br>General and Community<br>Plans                           | Surface water<br>\$5.15 /1000<br>gal (20 yr)<br>(construction<br>cost \$50M,<br>Operational<br>\$1.47/1000<br>gal)<br>Groundwater<br>\$3.71/1000<br>gal | MDWS                                     | 1,2           |
|    | ALTERNATIN                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>/E WATER SOURCE STRATE</b>                                                                                                                                                                                       | GIES                                                                                                                                                    |                                          |               |
| 8  | Consider alternative sources of<br>irrigation water including<br>wastewater reuse, recycled<br>stormwater runoff, and brackish well<br>water in land use permitting to<br>mitigate low flow stream conditions.<br>Require alternative sources for<br>irrigation when reasonably available<br>in county discretionary land use<br>permitting.                                                                                  | Maintain sustainable<br>resources<br>Protect and restore streams<br>Minimize adverse<br>environmental impacts<br>Maximize efficiency of water<br>use<br>Maintain consistency with<br>General and Community<br>Plans | N/A                                                                                                                                                     | Maui County<br>DEM<br>HC&S               | 1,2           |
| 9  | Expand distribution from the Kahului<br>WWTF for commercial, landscape<br>and other non-potable irrigation<br>applications. Potential available<br>recycled water is 4.2 mgd.                                                                                                                                                                                                                                                 | Maximize efficiency of water<br>use<br>Maintain consistency with<br>General and Community<br>Plans                                                                                                                  | \$6.7M                                                                                                                                                  | MDEM                                     | 1,2           |
| 10 | MDWS and MDEM collaborate to<br>identify private-public partnerships,<br>state and federal funding sources to<br>maximize utilization of recycled<br>water produced at the Kihei WWTF<br>and supplemental non-potable<br>sources for seasonal use of R-1<br>water.                                                                                                                                                            | Maximize efficiency of water<br>use<br>Maintain consistency with<br>General and Community<br>Plans                                                                                                                  | (Transmission<br>South Kīhei to<br>Wailea \$21M)                                                                                                        | MDEM<br>MDWS                             | 1,2           |

## APPENDIX 15A East Maui Streams Assessment Based on June 20, 2018 Findings of Facts, Conclusion of Law, and Decision & Order

| Unit  | Unit Name      | BFQ50   | BFQ50   | IIFS  | IIFS  | BF Avail. | BF Avail. | TFQ50 | TFQ50 |
|-------|----------------|---------|---------|-------|-------|-----------|-----------|-------|-------|
|       |                | at IIFS | at IIFS | (cfs) | (mgd) | to divert | to divert | (cfs) | (mgd) |
|       |                | (cfs)   | (mgd)   |       |       | at Q50    | at Q90    |       |       |
|       |                |         |         |       |       |           |           |       |       |
| 6027  | Maliko         |         |         |       |       |           |           |       |       |
| 6028  | Kuiaha         |         |         |       |       |           |           |       |       |
| 6029  | Kaupakulua     |         |         |       |       |           |           |       |       |
| 6030  | Manawaiiao     |         |         |       |       |           |           |       |       |
| 6031  | Uaoa           |         |         |       |       |           |           |       |       |
| 6032  | Keali`i        |         |         |       |       |           |           |       |       |
| 6033  | Kakipi         |         |         |       |       |           |           |       |       |
| 6034  | Honopou        | 6.50    | 4.20    | 0.00  |       | 0.00      | 0.00      |       |       |
| 6035  | Ho`olawa       |         |         |       |       |           |           |       |       |
| 6036  | Waipio         |         |         |       |       |           |           |       |       |
| 6037  | Hanehoi        | 2.54    | 1.64    | 0.00  | 0.00  | 0.00      | 0.00      |       |       |
|       | Puolua (Huelo) | 1.47    | 0.95    | 0.00  | 0.00  | 0.00      | 0.00      |       |       |
| 6020  | Stream         |         |         |       |       |           |           |       |       |
| 6038  | Hoalua         |         |         |       |       |           |           |       |       |
| 6039  | Hanawana       |         |         |       |       |           |           |       |       |
| 6040  | Kailua         |         |         |       |       |           |           |       |       |
| 6041  | Naili'ilihaele |         |         |       |       |           |           |       |       |
| 6042  | Puehu          |         |         |       |       |           |           |       |       |
| 6043  | O`opuola       |         |         |       |       |           |           |       |       |
| 6044  | Ka`aiea        |         |         |       |       |           |           |       |       |
| 6045  | Punalu`u       |         |         |       |       |           |           |       |       |
| 6046  | Kolea          |         |         |       |       |           |           |       |       |
|       | Alo            |         |         |       |       |           |           |       |       |
|       | Wahinepe`e     | 0.90    | 0.58    | 0.90  | 0.58  |           |           |       |       |
| 6048  | Puohokamoa     | 8.40    | 5.43    | 1.10  | 0.71  | 4.72      | -0.59     | 13.00 | 8.40  |
| 6049  | Haipuaena      | 4.90    | 3.17    | 1.36  | 0.88  | 2.29      | -0.88     | 6.60  | 4.27  |
| 6050  | Punalau        | 4.50    | 2.91    | 2.90  | 1.87  | 1.03      |           | 3.60  | 2.33  |
| 6051  | Honomanū       | 4.20    | 2.71    | 4.20  | 2.71  | 3.17      | 0.71      | 6.20  | 4.01  |
| 6052  | Nua'ailua      | 0.28    | 0.18    | 2.20  | 1.42  | -1.24     | -1.42     | 0.56  | 0.36  |
| 6053  | Pi`ina`au      | 14.00   | 9.05    | 0.00  | 0.00  | 0.00      | 0.00      | 21.00 | 13.57 |
|       | Palauhulu      | 11.00   | 7.11    | 0.00  | 0.00  | 0.00      | 0.00      | 6.10  | 3.94  |
| 605.5 | Stream         | 4.76    | 0.01    | 0.00  | 0.00  |           |           |       | 0.00  |
| 6054  | Ohia           | 4.70    | 3.04    | 0.00  | 0.00  | 3.04      |           |       | 0.00  |
| 6055  | Walokamilo     | 3.90    | 2.52    | 0.00  | 0.00  | 0.00      | 0.00      | 7.00  | 4.52  |
| 6056  | Wailuanui      | 6.10    | 3.94    | 0.00  | 0.00  | 0.00      | 0.00      |       | 0.00  |
| 6057  | West Wailuaiki | 6.00    | 3.88    | 0.00  | 0.00  | 0.00      |           | 8.50  | 5.49  |
| 6047  | Waikamoi       | 6.70    | 4.33    | 3.80  | 2.46  | 1.87      | -2.44     | 6.60  | 4.27  |

# CENTRAL AQUIFER SECTOR

| 1                          |                         |      |       |      |       |       |       |        |        |
|----------------------------|-------------------------|------|-------|------|-------|-------|-------|--------|--------|
|                            | Waikamoi                |      |       |      |       |       |       |        | 0.00   |
| 6058                       | East Wailuaiki          | 5.80 | 3.75  | 3.70 | 2.39  | 1.36  | -0.58 | 8.00   | 5.17   |
| 6059                       | Kopiliula               | 5.00 | 3.23  | 3.20 | 2.07  | 1.16  | -0.52 | 8.00   | 5.17   |
|                            | Puaka`a                 | 1.10 | 0.71  | 0.20 | 0.13  | 0.58  | -0.13 | 1.90   | 1.23   |
|                            | Stream                  |      |       |      |       |       |       |        |        |
| 6060                       | Waiohue                 | 5.00 | 3.23  | 0.00 | 0.00  | 0.00  | 0.00  | 6.20   | 4.01   |
| 6061                       | Pa`akea                 | 0.90 | 0.58  | 0.18 | 0.12  | 0.47  | -0.12 | 1.50   | 0.97   |
| 6062                       | Waia`aka                | 0.77 | 0.50  | 0.77 | 0.50  | 0.00  | -0.15 |        | 0.00   |
| 6063                       | Kapaula                 | 2.80 | 1.81  | 0.56 | 0.36  | 1.45  | 1.12  | 4.90   | 3.17   |
| 6064                       | Hanawi                  | 4.60 | 2.97  | 0.92 | 0.59  | 2.38  | 1.08  | 7.70   | 4.98   |
| 6065                       | Makapipi                | 1.30 | 0.84  | 0.00 | 0.00  | 0.00  | 0.00  | 7.40   | 4.78   |
| Wailoa Ditch Available     |                         |      | 73.26 |      | 16.80 | 20.35 | 2.21  | 62.36  | 40.30  |
| to Divert                  |                         |      |       |      |       |       |       |        |        |
| Petitioned Streams         |                         |      |       |      |       |       |       | 124.76 | 80.63  |
| Fully Restored TFQ50       |                         |      |       |      |       |       |       | 70.31  | 45.44  |
| IIFS                       |                         |      |       |      | 13.50 |       |       |        |        |
| Wailoa Ditch Flow at       |                         |      |       |      |       |       |       | 135.26 | 87.42  |
| Honop                      | Honopou 2011 -15        |      |       |      |       |       |       |        |        |
| IFQ50                      |                         |      |       |      |       |       |       | 40.04  | 12.50  |
| Honopou 2011 -15           |                         |      |       |      |       |       |       | 19.34  | 12.50  |
| TFQ50                      |                         |      |       |      |       |       |       |        |        |
| Lowrie                     | Lowrie Ditch at         |      |       |      |       |       |       | 16.85  | 10.89  |
| Honop                      | Honopou 2011 -15        |      |       |      |       |       |       |        |        |
| TFQ50                      |                         |      |       |      |       |       |       |        |        |
| Haiku [                    | Haiku Ditch at Honopou  |      |       |      |       |       |       | 6.46   | 4.18   |
| 2011-15 IFQ50              |                         |      |       |      |       |       |       | 42.20  | 0.00   |
| Hononou and Maliko         |                         |      |       |      |       |       |       | 13.30  | 8.60   |
| Total Flow diverted        |                         |      |       |      |       |       |       | 191.21 | 123.58 |
| prior to IIFS              |                         |      |       |      |       |       |       |        |        |
| IIFS Restored Streams      |                         |      |       |      |       |       |       | 70.31  | 45.44  |
| TFQ50                      |                         |      |       |      |       |       |       |        |        |
| Remains to Divert:         |                         |      |       |      |       |       |       | 120.90 | 78.14  |
| DWS Kamole Weir            |                         |      |       |      |       |       |       |        | 3.60   |
| Averag                     | Average 2014            |      |       |      |       |       |       |        | 4.65   |
|                            |                         |      |       |      |       |       |       | 2.50   | 1.62   |
| Remains for HC&S<br>(Est.) |                         |      |       |      |       |       |       |        | 72.92  |
| Restord                    | Restoration Status Full |      |       |      |       |       |       |        |        |
| Restore                    | Restoration Status      |      |       |      |       |       |       |        |        |
| Connectivity               |                         |      |       |      |       |       |       |        |        |