EACP Committee

From:	Tim Gunter <timgunter55@yahoo.com></timgunter55@yahoo.com>
Sent:	Thursday, October 31, 2019 1:18 PM
То:	EACP Committee
Subject:	EACP - 17 (5) for the 11/5 for the EACP committee meeting
Attachments:	Maui Seminar 2019.pptx

Aloha This is the presentation From Dr. Ratner and Hawaii Energy Independence Company for the 11/5 EACP committee meeting EACP - 17 (5) Any questions call Tim Gunter 633-7089

Aloha Tim Gunter

Biomass Gasification and Waste to Energy Conversion

Albert Ratner, PhD

Department of Mechanical Engineering University of Iowa

Presentation to the Maui County Council November 05, 2019

About Albert Ratner, PhD

- □ Joined the faculty at the University of Iowa in 2003
- Associate Professor of Mechanical Engineering
- Author/co-author of 48 scientific journal papers and 46 scientific conference papers
- Fellow of the American Society of Mechanical Engineers (ASME)
- Senior Member of American Institute of Aeronautics and Astronautics (AIAA)
- Executive Committee member for the Central States Section of the Combustion Institute

University of Iowa

Presentation Outline

- Waste Disposal and Energy Generation From a Societal and Historical Perspective
- Overview of Combustion Approaches to Waste
 Elimination
- Why is This Version of Down-Draft Gasification Appealing?
- Experimental System Research Gasifier at UI
- Results and Conclusions

Waste Disposal

- Burning, now more politely known as incineration
- Land-filling, still no better than it was 5000 years ago
- Recycling, helpful but can't fix everything
- Using less and Reuse are great, but won't eliminate the problem

From Smithsonian Magazine, Aug. 1 2016

From the Austin Chronicle

From General Kinematics

Energy Generation

- Fossil Fuels output a lot of CO₂
- Wind is great, but intermittent
- Solar panels are good, but take up a lot of space
- Waste-to-Energy is appealing, but is has to be low pollution and not crazy expensive

From Phys.org

From MachineDesign.com

From Nikkei Asian Review

What Path Makes Sense?

□ Use less

- □ From what you use, reuse what you can
- □ From what you can't reuse, recycle what you can
- From what you can't recycle, extract as much energy as you can (to replace fossil fuel sources) and bury as much carbon as you can to be carbon-neutral or carbon negative

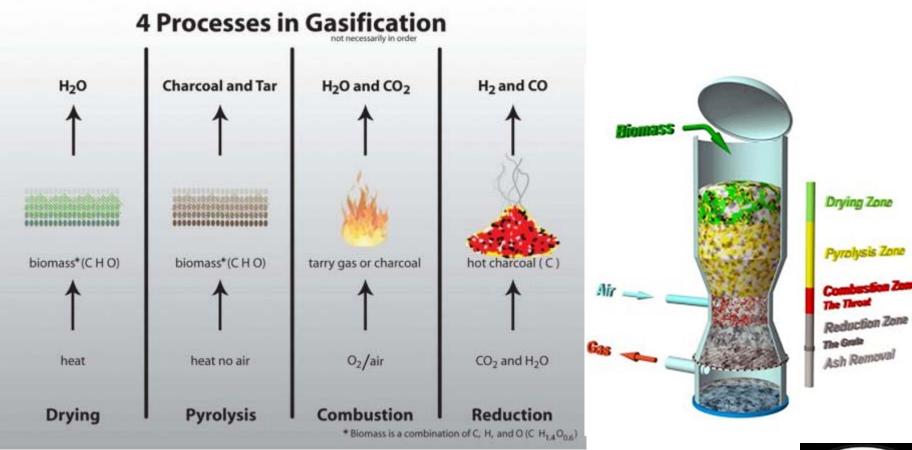
□ Make the best use of the resources you have!

Combustion Methods for Waste Disposal

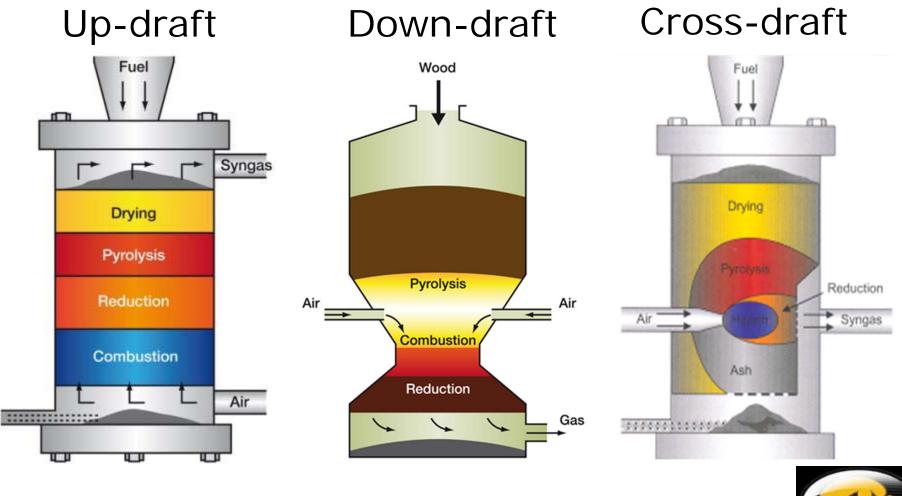
- Combustion-driven incineration
- Plasma-Arc driven incineration
- Pyrolysis into bio-oil
- Gasification with Syngas combustion
 - Up-draft gasification
 - Cross-draft gasification
 - Down-draft gasification

Incineration

- □ Common, and well understood
- **Expensive to do cleanly**
- For example, Sweden recycles half of their MSW and incinerates the other half
- Less CO₂ out put than fossil fuels because ~70% of material is from renewable sources


Plasma Arc and Bio-oil

- Plasma Arc is expensive both on a first-cost and energy efficiency basis. Used primarily for medical waste.
- Bio-oil is designed as a general replacement for crude oil
 - Process is not particularly clean
 - There exist many specific thermal, chemical, and biological processes that are better at producing specific chemicals and products from waste stream

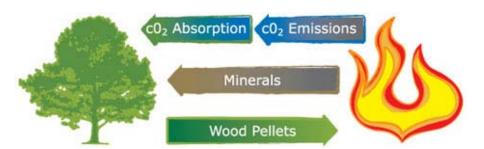


Gasification Processes

Types of Gasification

Down-Draft Gasification

- Produces char (biochar) as part of the process at about 20% by mass
- Much cleaner than other processes because the char breaks down organic vapor into simple components such as Hydrogen, CO, and CO₂
- The resulting gas is referred to as Syngas (Synthetic Natural Gas) or Producer Gas
- This clean gas is burned for energy in either an Internal Combustion (IC) engine or in a traditional boiler-steam turbine
- Testing with a range of materials including plastics and sorted trash pellets produced exhaust well within EPA emissions limits



Why Biomass/MSW Gasification?

Reduce Greenhouse Gas emissions

The University of Iowa

- Diesel for electricity generation produces 884 kg CO₂ per MWh
- Sorted MSW produces 209 kg CO₂ per MWh in a down-draft gasification-based power cycle
- Sorted MSW is approximately 70% renewable material
- □ Renewable resource
- Reduces landfill waste
- Monetarily competitive

What is New in This Technology?

- Is there new science that makes this technology possible?
 - No. The science is well known and has been around for several decades.
- □ Is this a secret process that requires confidentiality agreements to see?
 - No. The process is public and has been published in peer-reviewed journals.
- □ Why wasn't this done decades ago?
 - Ugh....

Let's recall 2006....

Portable phones? Yes
Cameras? Yes
Day Planners? Yes

From weebly.com

From amazon.com

From day-timer.com

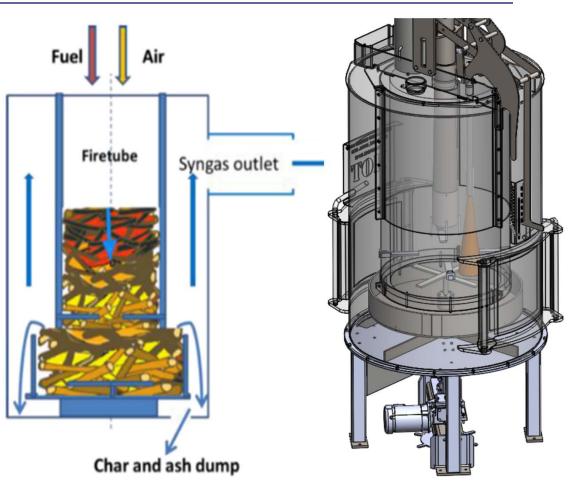
Then Came 2007

- □ iPhone released in 2007
- All of the specific features existed in either stand-alone devices or previous phones from other manufacturers
- Better integration and usability created a new market and fundamentally transformed society
- □ No new science

From apple.com

Key Attributes of New Gasifier Design

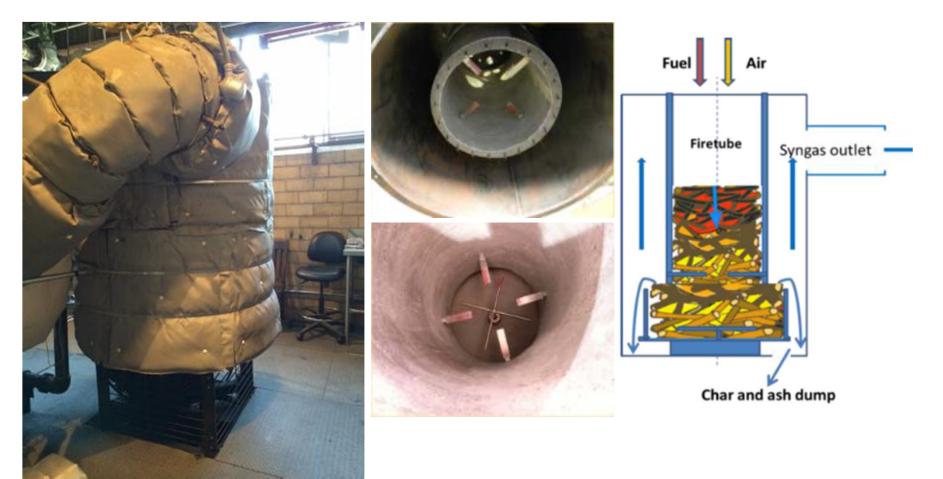
- □ Simple, low-cost design
- Produces charcoal (or biochar) and syngas as part of the regular operation
- The hot (up to 1000F) charcoal cleans the syngas and breaks fuel molecules down to simple pieces, mostly CO, CH₄, and H₂
- □ The syngas can then be cleanly burned for energy
- □ Ash can be used as a concrete hardener
- □ Charcoal (biochar) can be added to soil to both improve it and to sequester the carbon


UI and IEC Type of Down-Draft Gasifier

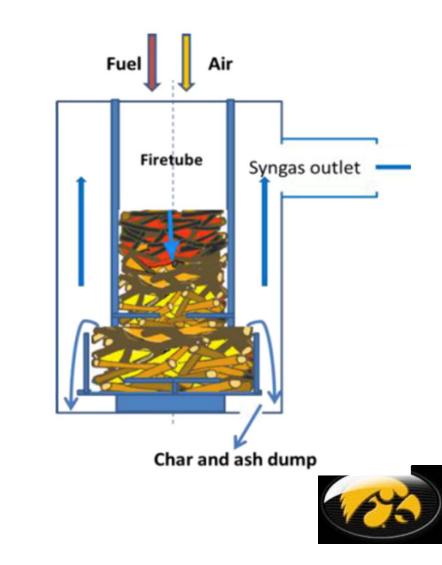
Air and fuel co-feed from the top

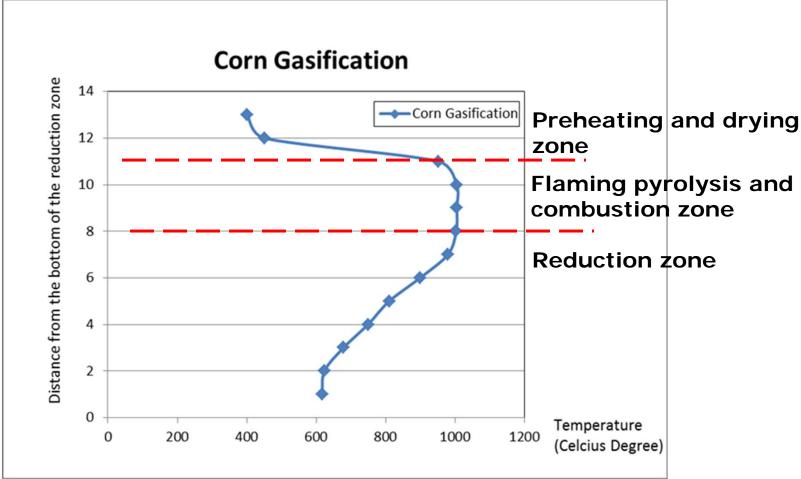
THE UNIVERSITY OF IOWA

- Continuous movement to agitate the fuel bed
- Char and ash drop out the bottom


□ 8" to 10" char bed

Research Gasifier at the University of Iowa

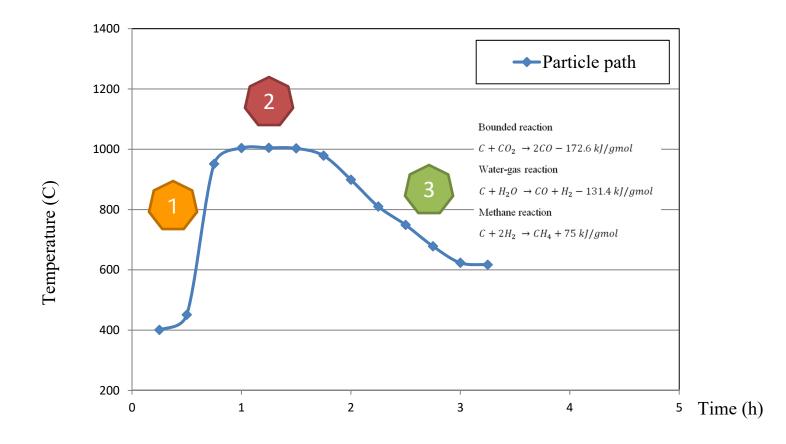



Gasifier Operation

Temperature profile in the gasifier **Corn Gasification** Distance from the bottom of the reduction zone Corn Gasification Temperature (Celcius Degree)

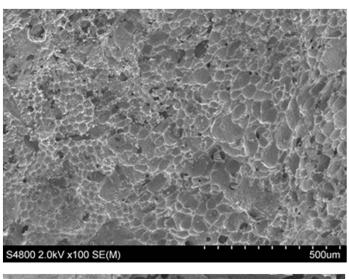
Thermal Profile and Different Zones

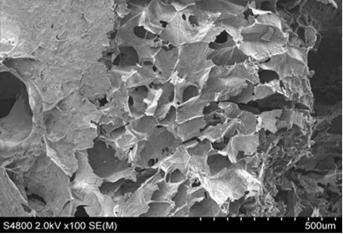
THE UNIVERSITY OF IOWA



RDF Pellet Characteristics

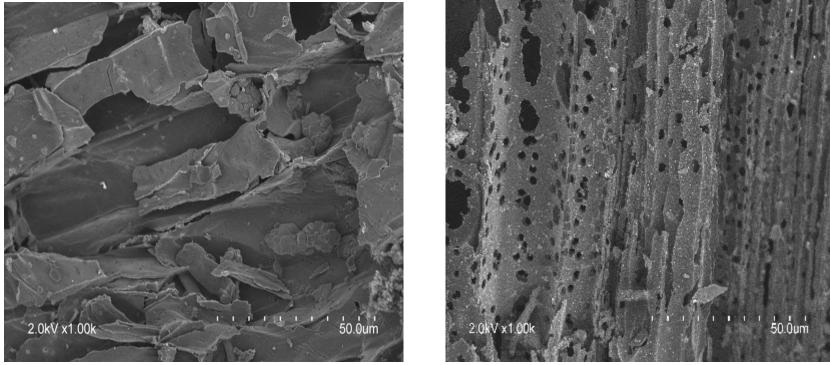
- Pellets were about 30% plastic, 35% cardboard, 35% paper and other cellulose material
- Composition was 63.71% Volatile Matter, 7.53% Fixed Carbon, and 28.71% Ash, with an energy of 8759 BTU/lb
- Post gasification, the material removed was 52.2% Ash and 47.8% Fixed Carbon


Particle Path



Characterization of Char

Exterior


Interior

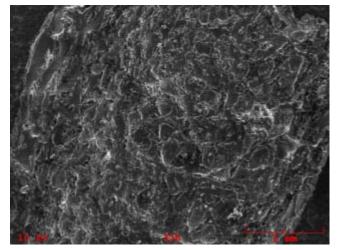
Biochar Structure

Scanning electron Microscope(SEM) analysis

Higher temperature and residence time leads to increase in the number of pores

Bio-char Ultimate and Proximate Analysis

	Corn Biochar
% Moisture	6.97
% Volatile Matter	10.16
% Ash	9.3
% Fixed Carbon	73.56


	Corn Biochar
% Carbon	66.64
% Hydrogen	3.242
% Nitrogen	2.81
% Sulphur	

Biochar Mineral Composition

Scanning electron Microscope(SEM) analysis

Elt.	Line	Intensity	Atomic	Conc	Units	Error	MDL	
		(c/s)	%			2-sig	3-sig	
С	Ka	12,177.78	82.945	72.704	wt.%	0.020	0.029	
0	Ka	1,047.06	13.085	15.278	wt.%	0.051	0.018	
Ρ	Ка	381.48	1.154	2.607	wt.%	0.027	0.006	
К	Ка	377.16	1.692	4.828	wt.%	0.057	0.010	
Fe	La	111.49	1.124	4.582	wt.%	0.147	0.016	
			100.000	100.000	wt.%			

K and P (nutrients) can be used to replace fertilizers

Biomass Summary and Conclusions

The University of Iowa

- Using BET analysis, the surface area of the biochar was 32.02 m²/g for corn in a single stage gasifier .Increase in surface area is due increase in residence time due to the larger high temperature zone
- Using SEM analyses, a number of pores ranging from 50 to 100 micrometer was obtained.
- Through ultimate and proximate analysis, it was found that the carbon content of the biochar from the single stage gasifier is closer to that of activated carbon.
- The main elements found in the biochar were mostly carbon, phosphorus, potassium and iron.
- Understanding the relationship between the production of syngas, tar and biochar will help in optimization of gasifier systems for various applications.

Thanks for Watching!

Questions?

